
© 2006 by IBM; made available under the EPL v1.0 | March 20, 2006

Tutorial

Marcelo Paternostro and Kenn Hussey
IBM Rational Software

Advanced Features of the
Eclipse Modeling Framework

http://eclipse.org/emf/docs/presentations/EclipseCon/

2 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Agenda

§ EMF in a Nutshell

§ Working with URIs
§ Working with Resources and ResourceSets
§ Customizing the Code Generator
§ Tuning for Performance and/or Memory Footprint
§ Importers and Exporters
§ Supporting Backward and Forward Compatibility

§ Summary

3 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

What is EMF?

§ A modeling & data integration framework

§ Exploits the facilities offered in Eclipse to...
§ Generate code without losing user customizations (merge)
§ Automate important tasks (such as registering runtime information)
§ Improve extensibility
§ Provide a UI layer

4 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

What is EMF “Model”?

§ Specification of your application’s data
§ Object attributes
§ Relationships (associations) between objects
§ Operations available on each object
§ Simple constraints (e.g. cardinality) on objects and relationships

§ Essentially it represents the class diagram of the application

5 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

What does EMF Provide?

§ From a model specification, EMF can generate efficient, correct,
and easily customizable implementation code

§ Out of the box, EMF provides support for
§ Java™ interfaces
§ UML™
§ XML Schema

§ EMF converts your models to Ecore (EMF metamodel)

6 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

What does EMF Provide?

§ Tooling support within the Eclipse framework (UI, headless
mode, Ant and standalone), including support for generating
Eclipse-based and RCP editors

§ Reflective API and dynamic model definition

§ Persistence API with out of box support for XML/XMI
(de)serialization of instances of a model

§ And much more….

7 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Why EMF?

§ EMF is middle ground in the modeling vs. programming worlds
§ Focus is on class diagram subset of UML modeling (object model)
§ Transforms models into Java code
§ Provides the infrastructure to use models effectively in your

application

§ Very low cost of entry
§ EMF is free and open source
§ Full scale graphical modeling tool not required
§ Reuses your knowledge of UML, XML Schema, or Java

§ It’s real, proven technology (since 2002)

8 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

EMF History

§ First version was released in June, 2002

§ Originally based on MOF (Meta Object Facility)
§ From OMG (Object Management Group)
§ Abstract language and framework for specifying, constructing, and

managing technology neutral metamodels

§ EMF evolved based on experience supporting a large set of tools
§ Efficient Java implementation of a practical subset of the MOF API

§ 2003: EMOF defined (Essential MOF)
§ Part of OMG’s MOF 2.0 specification; aligned with UML 2.0
§ EMF provides approximately the same functionality
§ Significant contributor to the specification; adapting to it

9 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Who is Using EMF Today?

§ Eclipse projects
§ Tools projects: UML2 and Visual Editor (VE)
§ Web Tools Platform (WTP) Project
§ Test and Performance Tools Platform (TPTP) Project
§ Business Intelligence and Reporting Tools (BIRT) Project
§ Data Tools Platform (DTP) Project
§ Technology project: Graphical Modeling Framework (GMF)

§ Commercial offerings
§ IBM, Borland, Oracle, Omondo, Versata, MetaMatrix, Bosch,

Ensemble...

§ Large open source community
§ Estimated 125,000 download requests in January 2006

10 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

EMF at IBM

§ Pervasive usage across product lines
§ IBM® Rational® Software Architect
§ IBM® Rational® Application Developer for WebSphere® Software
§ IBM® WebSphere® Integration Developer
§ IBM® WebSphere® Application Server
§ IBM® Lotus® Workplace

§ Emerging technology projects: alphaWorks®
§ Emfatic Language for EMF Development

(http://www.alphaworks.ibm.com/tech/emfatic)
§ Model Transformation Framework

(http://www.alphaworks.ibm.com/tech/mtf)
§ XML Forms Generator (http://www.alphaworks.ibm.com/tech/xfg)

11 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Agenda

§ EMF in a Nutshell

§ Working with URIs
§ Working with Resources and ResourceSets
§ Customizing the Code Generator
§ Tuning for Performance and/or Memory Footprint
§ Importers and Exporters
§ Supporting Backward and Forward Compatibility

§ Summary

12 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

URI – Uniform Resource Identifier

§ A formatted string that serves as an identifier for a resource

§ Specification:
§ Definition: http://www.ietf.org/rfc/rfc1630.txt
§ Generic Syntax: http://www.ietf.org/rfc/rfc2396.txt

§ Can assume two forms
§ URL – Uniform Resource Locators
§ Example: http://www.ietf.org/rfc/rfc1738.txt,

http://rfc1737.x42.com/, http://rfc2141.x42.com/
§ In Java is always associated with a stream handler

§ URN – Uniform Resource Name
§ Example: urn:oasis:member:A00024:x

13 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

URI Syntax

§ Generic
§ [scheme:]scheme-specific-part[#fragment]
§ Absolute vs. Relative
§ Opaque vs. Hierarchical
§ Examples: file:///tmp/calendar, mailto:marcelop@ca.ibm.com,

../tmp/presentation.ppt

§ Hierarchical
§ [scheme:][//authority][path][?query][#fragment]
§ Server-based vs. Registry based authority
§ Example:

http://download.eclipse.org
/tools/emf/scripts/downloads-viewer.php
?s=2.1.0/R200507070200
#quicknav

14 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

URIs in EMF

§ URIs are used in EMF to identify:
§ A resource
§ An object in a resource
§ An Ecore package
§ The package’s namespace URI

§ Important facilities:
§ URI class
§ org.eclipse.emf.common.util.URI

§ URI Converter
§ Eclipse Utilities

15 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

org.eclipse.emf.common.util.URI

§ Predates java.net.URI
§ Instances are “immutable objects” that represent URIs
§ Besides all the URI required operations, this class also provides Eclipse

related methods and other features

Create a new absolute or relative URI using
another URI as base

Resolve and Deresolve
methods

Allow retrieving the individual elements that form
the URI, such as the scheme, authority, and
device

Syntax query methods

Simplify the instantiation of a URI by providing
the appropriate scheme, encoding, …

Static factory methods

16 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

org.eclipse.emf.common.util.URI
{

URI fileURI = URI.createFileURI("c:\\tmp\\foo.txt");
URI platformURI = URI.createPlatformResourceURI("/Project A/MyModel.ecore", true);

System.out.println(fileURI);
System.out.println(platformURI);

URI relativeURI = URI.createURI("../bar.txt");
URI absoluteFileURI = relativeURI.resolve(fileURI);
URI absolutePlatformURI = relativeURI.resolve(platformURI);

System.out.println(relativeURI);
System.out.println(absoluteFileURI);
System.out.println(absolutePlatformURI);

URI sameDirectoryFileURI = URI.createFileURI("c:\\tmp\\A File.txt");

System.out.println(fileURI.deresolve(sameDirectoryFileURI));
} file:/c:/tmp/foo.txt

platform:/resource/Project%20A/MyModel.ecore

../bar.txt
file:/c:/bar.txt
platform:/resource/bar.txt

foo.txt

17 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

URI Converter

§ Provides an interface for customized treatment of URIs within a
Resource Set

§ It is responsible for
§ URI normalization
§ Creation of input and output streams

§ org.eclipse.emf.ecore.resource.URIConverter

ResourceSet

Resource

18 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

§ Process of converting an input URI into an actual URI of a
resource

§ The URIConverter default implementation
§ Checks if the input URI is mapped to a different URI
§ The global map can be populated by accessing

URI.URI_MAP or through the uri_mapping extension point

§ Turns a relative URI into a Platform Resource URI or a file URI
§ Applies this algorithm recursively

URI Normalization

<extension point="org.eclipse.emf.ecore.uri_mapping">
<mapping source="//special/" target="special/"/>

</extension>

19 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

URI Normalization

{
URI logicalURI1 = URI.createURI("myscheme:/identifier/");
URI logicalURI2 = URI.createURI("myscheme:/identifier/myFile.xml");
URI physicalURI = URI.createPlatformResourceURI("prj/fld/");

URIConverter uriConverter = new URIConverterImpl();
uriConverter.getURIMap().put(logicalURI1, physicalURI);

System.out.println(uriConverter.normalize(logicalURI2));

URI relativeURI = URI.createURI("myFile.xml");

System.out.println(uriConverter.normalize(relativeURI));
}

platform:/resource/prj/fld/myFile.xml

file:/C:/eclipse/workspace/myFile.xml

20 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Eclipse Utilities

§ When developing Eclipse applications, you can use several
utilities and helpers available in EMF
§ org.eclipse.emf.common.CommonPlugin.resolve(URI)
§ Resolves a platform URI into a local URI, if possible

§ org.eclipse.emf.ecore.plugin.EcorePlugin
§ computePlatformURIMap()
§ Computes a map so that plug-ins in the workspace will

override those in the environment
§ getPlatformResourceMap() and

resolvePlatformResourcePath(String)
§ Defines an association between a name and a URI

21 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Eclipse Utilities
{

URI existingResourceURI = URI.createPlatformResourceURI("MyProject");
URI nonExistingResourceURI = URI.createPlatformResourceURI("NotMyProject");

System.out.println(CommonPlugin.resolve(existingResourceURI));
System.out.println(CommonPlugin.resolve(nonExistingResourceURI));

URI workspacePluginURI = URI.createURI("platform:/plugin/my.new.plugin/");
Map platformURIMap = EcorePlugin.computePlatformURIMap();

System.out.println(platformURIMap.get(workspacePluginURI));

URI projectFileURI = URI.createFileURI(“c:\\MyProjectDir”);
EcorePlugin.getPlatformResourceMap().put("MyProject", projectFileURI);

System.out.println(EcorePlugin.resolvePlatformResourcePath("MyProject"));
System.out.println(EcorePlugin.resolvePlatformResourcePath("MyProject/foo.txt"));

}
file:/C:/eclipse/workspace/MyProject
platform:/resource/NotMyProject

platform:/resource/my.new.plugin/

file:/C:/MyProjectDir
file:/C:/MyProjectDir/foo.txt

22 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Agenda

§ EMF in a Nutshell

§ Working with URIs
§ Working with Resources and ResourceSets
§ Customizing the Code Generator
§ Tuning for Performance and/or Memory Footprint
§ Importers and Exporters
§ Supporting Backward and Forward Compatibility

§ Summary

23 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Working with Resources and ResourceSets

§ Working with proxies
§ Identifying proxies
§ Using the Validation Framework to detect unresolved proxies
§ Using “fragment queries” to handle unresolved proxies

§ Cross-Resource Containment

§ Inverse References

§ Resource Tips & Tricks
§ Unloading
§ Tracking modification
§ Am I loading something?

24 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Persistence and Serialization Review

§ Serialized data is referred to as a resource
§ Data can be spread out among a number of resources in a

resource set
§ One resource is loaded at a time, even if it has references to

objects in other resources in the resource set
§ Proxies exist for objects in other resources
§ Lazy or demand loading of other resources as needed
§ A resource can be unloaded

Resource 2Resource 1

ResourceSet

Client

load

demand-load
resource 2

resource 1 uri 1 resource 1
uri 2 resource 2

25 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Identifying Proxies

§ In some scenarios it may be important to know up-front what are
the proxies referenced by a given object
§ Check whether the user has everything that will be necessary to

load the model
§ Extract missing resources from the repository
§ Decide whether loading a specific object is a long or short

operation

§ org.eclipse.emf.ecore.util.EcoreUtil.ProxyCrossReferencer
§ A CrossReferencer that finds proxies without resolving them
§ For each object in a given context (resource, resource set,

EObject, collection), checks if the referenced objects are in the
same resource or not

26 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Going Deeper: EcoreUtil’s CrossReferencers

§ Utility classes that find “uses” of an object

§ Also the data structures that hold the objects they find
§ A CrossReferecer is a java.util.Map
§ On each Map.Entry
§ Key: reference target
§ Value: list of EStructuralFeature.Setting with all the source

object-feature pairs referencing the keyed target

27 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Going Deeper: EStructuralFeature.Setting

§ Interface that represents the value held by a feature of an
EObject

§ Exposes all the feature-related methods of EObject
§ eGet, eSet, eIsSet, and eUnset

28 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Going Deeper: Types of Reference

§ Containment Reference
§ Has an “implicit” opposite (eObject.eContainer())

§ Container Reference
§ An explicit reference defined as the opposite of a containment

reference

§ Cross-Reference
§ May or may not have an opposite

§ Any reference can refer to an EObject located in either the same
or different resource

29 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

EcoreUtil.ProxyCrossReferencer
public static void printProxiesDetails(ResourceSet resourceSet)
{

int counter = 0;
Map map = ProxyCrossReferencer.find(resourceSet);
for (Iterator i = map.entrySet().iterator(); i.hasNext();)
{
Map.Entry entry = (Map.Entry)i.next();
EObject proxyEObject = (EObject)entry.getKey();
System.out.println("" + ++counter + ". " + EcoreUtil.getURI(proxyEObject));
System.out.println("Is Proxy: " + proxyEObject.eIsProxy());

List settings = (List)entry.getValue();
for (Iterator j = settings.iterator(); j.hasNext();)
{

EStructuralFeature.Setting setting = (EStructuralFeature.Setting)j.next();
System.out.println("\tFeature: " + setting.getEStructuralFeature().getName());

EObject eObject = setting.getEObject();
EStructuralFeature nameFeature = eObject.eClass().getEStructuralFeature("name");
if (nameFeature != null)
{
System.out.println("\tEObject.getName(): " + setting.getEObject().eGet(nameFeature));

}
}

}
}

1. uri3.xmi#/0
Is Proxy: true

Feature: home
EObject.getName(): john

30 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Validating Proxies

§ The validation framework can be used to validate proxies

§ The EObjectValidator checks if all the referenced objects of a
given EObject are resolved
§ The proxy references are resolved during the validation

§ If a proxy is broken, the validation produces a Diagnostic with
EObjectValidator.EOBJECT__EVERY_PROXY_RESOLVES as
its error code

31 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Validating Proxies
public static void validateProxies(EObject eObject)
{

Diagnostic diagnostic = Diagnostician.INSTANCE.validate(eObject);
if (diagnostic.getSeverity() == Diagnostic.ERROR)
{
if (hasEveryProxyResolvesCode(diagnostic))
{

System.out.println("Broken proxies found!");
return;

}
}
System.out.println("Proxies are fine.");

}

public static boolean hasEveryProxyResolvesCode(Diagnostic diagnostic)
{

if (diagnostic.getCode() == EObjectValidator.EOBJECT__EVERY_PROXY_RESOLVES)
return true;

for (Iterator i = diagnostic.getChildren().iterator(); i.hasNext();)
{
Diagnostic childDiagnostic = (Diagnostic)i.next();
return hasEveryProxyResolvesCode(childDiagnostic);

}
return false;

}

32 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Handling Broken Proxies

§ Your application can provide a mechanism to handle broken
proxies by
§ Reporting the error to the user
§ Avoiding use of the object(s) that could not be resolved
§ Recovering the missing object(s)

§ EMF doesn’t provide such a mechanism but provides hooks to
help you implement one
§ Fragment query capability is one of these hooks

33 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Fragment Queries

§ The idea is to “decorate” the fragment portion of a URI with
details that further describe the referenced object
§ The description can be used by a service to locate the object or to

enrich an error message to be presented to the user

§ Query data
§ Added to the fragment portion of the object’s URI
§ Must be at the end of the URI fragment portion
§ Is delimited by “?”
§ Example:

file:/c:/dir/library.xmi#//@books.0?Book.ISBN.0131425420?

Fragment Query

URI Fragment

34 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Saving Fragment Queries

§ If you are using a XMLResource to serialize your objects
§ Override the getURIFragmentQuery(Resource, EObject) method of

org.eclipse.emf.ecore.xmi.impl.XMLHelperImpl to return the query
that should be serialized for the given EObject

§ Override the createXMLHelper() method of
org.eclipse.emf.ecore.xmi.impl.XMLResourceImpl to return an
instance of your XMLHelper

§ The getURIFragmentQuery(…) method returns the string that is
used as the “query”
§ The string should not contain the delimiter character (?)
§ A null string indicates that there is no query
§ The characters must be valid URI fragment characters (as defined

by the specification)

35 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Going Deeper: org.eclipse.emf.ecore.xmi.XMLHelper

§ Interface used by the default resource implementations
§ Not used by clients

§ Single place where the methods used to save and load objects
are located
§ Simplifies customizations

36 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Using Fragment Queries

§ EMF doesn’t enforce the use of fragment queries

§ Reasonable approach:
§ Load an object
§ Try to resolve its proxies
§ Identify the remaining (broken) proxies
§ Use the fragment query of the broken proxies to either report the

problem to the user or recover the missing objects

37 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Cross-Resource Containment

§ Allows an object hierarchy to be persisted across multiple
resources
§ eObject.eResource() may be different from

eObject.eContainer().eResource()

§ Must be explicitly enabled
§ The containment reference has to be set to resolve proxies
§ Also, on generated models, the value of the “Containment

Proxies” generator model property has to be set to ‘true’

38 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Enabling Cross-Resource Containment
EReference houses = EcoreFactory.eINSTANCE.createEReference();
houses.setName("houses");
houses.setEType(house);
houses.setUpperBound(ETypedElement.UNBOUNDED_MULTIPLICITY);
houses.setContainment(true);
houses.setResolveProxies(true);
person.getEStructuralFeatures().add(houses);

Dynamic Model

Generated Model

39 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Cross-Resource Containment
{

Library library = LibFactory.eINSTANCE.createLibrary();
Book book = LibFactory.eINSTANCE.createBook();
library.getBooks().add(book);

System.out.println(library.eResource() + " - " + book.eResource());

Resource libraryResource = new ResourceImpl(URI.createURI("lib"));
libraryResource.getContents().add(library);

System.out.println(library.eResource().getURI() + " - “ +
book.eResource().getURI());

Resource bookResource = new ResourceImpl(URI.createURI("book"));
bookResource.getContents().add(book);

System.out.println(library.eResource().getURI() + " - " +
book.eResource().getURI());

bookResource.getContents().remove(book);

System.out.println(library.eResource().getURI() + " - " +
book.eResource().getURI());

}

null - null

lib - lib

lib - book

lib - lib

40 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

EcoreUtil Methods for Cross-Resource Containment

§ When the containment tree is spread across multiple files, one
may be interested in differentiating the “local” children of an
object from children in other resources

§ The *Proper* methods available in EcoreUtil only deal with the
“local” children of a containment tree

All children

Local children

41 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Inverse References

§ Sometimes it may be handy to retrieve the opposite of a
unidirectional association end
§ The use case you are implementing requires a navigation that was

not anticipated when the model was defined

§ EMF provides two mechanisms
§ CrossReferencer
§ ECrossReferenceAdapter

42 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Going Deeper: Associations and References

§ An association between two classes allows their instances to
“communicate” with each other
§ Each navigable end of an association is represented by an

EReference in Ecore
§ If the association is bidirectional, it will be represented by two

references, r1 and r2 where
r1.getEOpposite() == r2 && r2.getEOpposite() == r1

Associations

References

43 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Using a CrossReferencer

§ Dynamically computes a map with the target object and the list of
settings that “refer” to it
§ This computation may be a long operation depending on the

number of objects

§ The map represents a snapshot of the state of the objects
§ As the objects change, the settings’ values may become

inconsistent with the map

§ Requires a context to compute the map
§ The context can be a collection of EObjects, a resource, or a

resource set, or a combination of these
§ Objects that are not in the scope of the context won’t be available

in the map

44 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Using a CrossReferencer
{

Library library = LibFactory.eINSTANCE.createLibrary();
Book book = LibFactory.eINSTANCE.createBook();
book.setTitle("EMF");
Person dave = LibFactory.eINSTANCE.createPerson();

library.getBooks().add(book);
library.getWriters().add(dave);
book.getWriters().add(dave);

Map map = CrossReferencer.find(Collections.singleton(library));
List settings = (List)map.get(dave);
if (settings != null)
{
for (Iterator i = settings.iterator(); i.hasNext();)
{

EStructuralFeature.Setting setting = (EStructuralFeature.Setting)i.next();
if (setting.getEObject() == book &&

setting.getEStructuralFeature() == LibPackage.Literals.BOOK__WRITERS)
{
System.out.println("Found it. The book is \"" + book.getTitle() + "\"");

}
}

}
}

Found it. The book is "EMF"

45 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Using the ECrossReferenceAdapter

§ A special adapter that
§ Attaches itself to all objects in a containment hierarchy
§ May pose a memory footprint problem depending on the

number of objects
§ Keeps a CrossReferencer in sync with the state of the objects

§ The application can determine and change the context used
when computing the map

46 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Using the ECrossReferenceAdapter
{
Library library = LibFactory.eINSTANCE.createLibrary();

ECrossReferenceAdapter adapter = new ECrossReferenceAdapter();
library.eAdapters().add(adapter);

Book book = LibFactory.eINSTANCE.createBook();
book.setTitle("EMF");
Person dave = LibFactory.eINSTANCE.createPerson();

library.getBooks().add(book);
library.getWriters().add(dave);
book.getWriters().add(dave);

Collection settings = adapter.getNonNavigableInverseReferences(dave);
for (Iterator i = settings.iterator(); i.hasNext();)
{
EStructuralFeature.Setting setting = (EStructuralFeature.Setting)i.next();
if (setting.getEObject() == book &&

setting.getEStructuralFeature() == LibPackage.Literals.BOOK__WRITERS)
{

System.out.println("Found it. The book is \"" + book.getTitle() + "\"");
}

}
}

Found it. The book is "EMF"

47 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Resource Tips & Tricks

§ Unloading a resource
§ Resource.unload()
§ EMF’s default implementation performs the following steps:
§ Sets the loaded attribute to false;
§ Caches an iterator with all the proper contents of all objects

held by the resource
§ Clears the resource’s content, error and warning lists
§ Turns each object returned by the iterator into a proxy and

clears its adapter list
§ Fires a notification
§ FeatureID = Resource.RESOURCE__IS_LOADED

§ You may also remove the resource from the resource set

48 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Resource Tips & Tricks

§ Tracking modification
§ Resource.setTrackingModification(boolean)
§ When activated, EMF’s default implementation performs the

following steps:
§ Instantiates an Adapter and registers it on all proper objects
§ The adapter calls Resource.setModified(boolean) after

receiving a notification
§ Registers the adapter on any object added to the resource and

deregisters it from objects that are removed
§ When deactivated, the default implementation removes the adapter

from the objects
§ You can manually define what is the isModified state of a resource

49 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Resource Tips & Tricks

§ Am I loading something?
§ Resource.Internal.isLoading()
§ Every Resource is supposed to implement the

Resource.Internal interface
§ When a resource is being loaded the isLoading() method returns

true

50 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Agenda

§ EMF in a Nutshell

§ Working with URIs
§ Working with Resources and ResourceSets
§ Customizing the Code Generator
§ Tuning for Performance and/or Memory Footprint
§ Importers and Exporters
§ Supporting Backward and Forward Compatibility

§ Summary

51 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Generating Customized Code

§ The EMF code generator can be customized in various ways to
meet the needs of your application

§ There are different levels of customization
§ Generator Options
§ Dynamic Templates
§ Generator Specialization

§ As the generator is made more flexible and extensible, code
customization will become even easier

52 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Generator Options

§ The EMF code generator provides a number of options which,
when enabled, can have a significant effect on the kind of code
that is generated using the default templates
§ Array Accessors
§ Suppress Containment
§ Suppress Interfaces
§ Suppress Notification
§ Suppress Unsettable
§ Suppress EMF Meta Data
§ Suppress EMF Model Tags
§ Suppress EMF Types

53 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Array Accessors

§ Generates “bean-like”, array-based getters and setters for multi-
valued features

§ Set the value of the ‘Array Accessors’ generator model property
to ‘true’

§ Since arrays are strongly typed, provides faster item access (no
double index range checking and no casting)

§ Direct modification of the array will not produce notification

54 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Suppress Containment

§ Generates code that does not automatically update container
references when containment features are modified

§ Set the value of the ‘Suppress Containment’ generator model
property to ‘true’

§ Improves performance by avoiding the need to maintain
referential integrity

§ Many things in the framework will work poorly, so use only if you
don't need full integration with the rest of EMF

55 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Suppress Interfaces

§ Generates implementation classes without separate interface
declarations

§ Set the value of the ‘Suppress Interfaces’ generator model
property to ‘true’

§ Improves performance since dispatch through an interface is
slower and less likely to be in-lined by a JIT compiler

§ Reduces byte code footprint somewhat

§ Can only be used for models with no multiple inheritance

56 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Suppress Notification

§ Generates code (setters and lists) that does not provide support
for change notification

§ Set the value of the ‘Suppress Notification’ generator model
property to ‘true’

§ Saves the cost of checking whether notification is needed, and
reduces footprint by not generating notification code

57 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Suppress Unsettable

§ Generates code without support (isSet/unset methods) for
unsettable features

§ Set the value of the ‘Suppress Unsettable’ generator model
property to ‘true’

§ Saves on instance footprint (only slightly if using Boolean flags)
and on update costs, since there is less state to update

§ The same can be achieved by avoiding this in the model in the
first place (i.e. no unsettable features)

58 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Suppress EMF Meta Data

§ Generates code without a package interface declaring metadata
accessors and constants

§ Set the value of the ‘Suppress EMF Meta Data’ generator model
property to ‘true’

§ Helps produce an API with no visible dependencies on EMF, i.e.
a "pure" API

59 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Suppress EMF Model Tags

§ Generates code without @model tags in the Javadoc

§ Set the value of the ‘Suppress EMF Model Tags’ generator
model property to ‘true’

§ Helps produce an API with no visible dependencies on EMF, i.e.
a "pure" API

60 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Suppress EMF Types

§ Generates methods for features and operations which use
standard Java collection and object types instead of those from
EMF (e.g. EList, EMap, EObject)

§ Set the value of the ‘Suppress EMF Types’ generator model
property to ‘true’

§ Helps produce an API with no visible dependencies on EMF, i.e.
a "pure" API

61 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Dynamic Templates

§ The content of the templates used by the EMF code generator
can be changed or replaced by enabling dynamic templates

§ Set the value of the ‘Dynamic Templates’ generator model
property to ‘true’

§ Set the value of the ‘Template Directory’ generator model
property to the location of the custom templates

§ Dynamic templates can be customized in three ways
§ Replacement
§ Insertions
§ Overrides

62 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Template Replacement

§ Copy default template to the dynamic template directory (with the
same name and relative location) and modify as desired

§ Modified template is compiled dynamically and used in place of
the default template

§ Must keep in sync with changes in default templates (“clone and
own”)…

63 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Template Insertions

§ Can insert content into default templates via insertion points
identified using JET @include directive (fail=“silent”)

§ Dynamic template includes default template; insertions are
included and compiled dynamically, result is used in place of the
default template

§ By convention, insertions are placed in a folder named after the
including template and end with a .insert.*jet extension

§ A number of insertion points have been defined for some
commonly customized EMF templates (i.e. Class.javajet,
ItemProvider.javajet, TestCase.javajet)

64 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Template Overrides

§ Can override content of default templates via override points
identified using JET @include directive (fail=“alternative”)

§ Dynamic template includes default template; overrides are
included and compiled dynamically, result is used in place of the
default template

§ By convention, overrides are placed in a folder named after the
including template and end with a .override.*jet extension

§ A number of override points have been defined for some
commonly customized EMF templates (i.e. Class.javajet,
ResourceFactoryClass.javajet, TestCase.javajet)

65 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Generator Specialization

§ Complete control over code generation, including which
templates are used and for which model elements, can be
obtained via a specialized generator model implementation

§ New generator properties/options can be introduced and
exposed in the default editor by registering specialized adapter
factory via the org.eclipse.emf.edit.itemProviderAdapterFactories
extension point

§ Must keep up with changes in default generator model
implementation

§ Can use Generator Annotations as an alternative to introducing
new properties

66 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Agenda

§ EMF in a Nutshell

§ Working with URIs
§ Working with Resources and ResourceSets
§ Customizing the Code Generator
§ Tuning for Performance and/or Memory Footprint
§ Importers and Exporters
§ Supporting Backward and Forward Compatibility

§ Summary

67 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Performance/Memory Overhead

§ EMF provides a number of mechanisms that can be used to tune
the performance and/or memory overhead of your model
implementation

§ Code Generator Options
§ Boolean Flags
§ Virtual Feature Delegation
§ Minimal Reflective Methods
§ Literals Interface

§ XMLResource Options

68 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Boolean Flags

§ Generates code that uses (a) consolidated bit field(s) instead of
separate fields to represent the values of Boolean attributes and
whether unsettable features are set

§ Set the value of the ‘Boolean Flags Field’ generator model
property to the name of the bit field(s) to be generated or reused

§ Set the value of the ‘Boolean Flags Reserved Bits’ generator
model property to the number of bits in the field(s) that are
reserved (e.g. used by parent classes)

§ Helps reduce memory overhead for models with a large number
of Boolean attributes or unsettable features

69 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Virtual Feature Delegation

§ Generates code that uses a single, dynamically-allocated array
field and associated index field(s) instead of separate fields to
represent the values of non-primitive features

§ Set the value of the ‘Feature Delegation’ generator model
property to ‘Virtual’

§ Helps reduce memory overhead for models with a large number
of features that are often “sparsely” used

70 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Minimal Reflective Methods

§ Generates reflective methods that delegate to super, i.e. they
delegate switching for any non-matching features to the
superclass implementation for dispatching

§ Set the value of the ‘Minimal Reflective Methods’ generator
model property to ‘true’ (default)

§ Helps reduce memory (byte code) overhead for models with a
large number of inherited features

§ May increase performance overhead for models with deep class
hierarchies

71 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Literals Interface

§ Generates an interface (nested within the package interface) that
defines metadata literals (i.e. types and features)

§ Set the value of the ‘Literals Interface’ generator package
property to ‘true’ (default)

§ Helps reduce performance overhead of access to a model’s
metadata, e.g. EcorePackage.Literals.ECLASS vs.
EcorePackage.eINSTANCE.getEClass()

72 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

XMLResource Options

§ XMLResource offers a set of options that can be used to tweak
load and save behavior

§ The options are passed to the resource’s save and load methods
as entries in a map
§ The key is the constant that represents the option
§ Each option requires an appropriate value

73 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

XMLResource Load Options

§ OPTION_DEFER_IDREF_RESOLUTION
§ Option value: Boolean
§ Defers resolving references within a resource until the whole

document has been parsed

§ OPTION_USE_PARSER_POOL
§ Option value: org.eclipse.emf.ecore.xmi.XMLParserPool
§ Provides a parser pool, from which SAXParser instances are

created and reused

§ OPTION_USE_XML_NAME_TO_FEATURE_MAP
§ Option value: java.util.Map
§ Enables sharing the cache of mappings between qualified XML

names (namespace + local name) and corresponding Ecore
features across invocations of load(…), or even among resources

74 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

XMLResource Load Options

§ OPTION_USE_CACHED_LOOKUP_TABLE
§ Option value: java.util.List
§ Specifies a list as a place holder for caching information during the

subsequent saving of XML documents

§ OPTION_USE_DEPRECATED_METHODS
§ Option value: Boolean
§ Use methods that were deprecated in EMF
§ The default value is Boolean.TRUE

75 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

XMLResource Save Options

§ OPTION_FLUSH_THRESHOLD
§ Option value: Integer
§ Specifies a maximum number of characters to allow in the output

stream before flushing it

§ OPTION_USE_CACHED_LOOKUP_TABLE
§ Option value: java.util.List
§ Provides a placeholder to cache information about structure of the

model (using qualified XML names as a key for caching
information)

§ OPTION_CONFIGURATION_CACHE
§ Option value: Boolean
§ Enables caching and reusing generic data in repeated save

operations, avoiding the cost of reinitializing the data

76 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

XMLResource Save Options

§ OPTION_FORMATTED
§ Option value: Boolean
§ Disables formatting of documents, omitting whitespaces and line

brakes, to improve the performance of saving and, subsequently,
loading the resulting document

§ OPTION_USE_FILE_BUFFER
§ Option value: Boolean
§ Enables accumulating output during serialization in a temporary

file, rather than an in-memory buffer

77 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Agenda

§ EMF in a Nutshell

§ Working with URIs
§ Working with Resources and ResourceSets
§ Customizing the Code Generator
§ Tuning for Performance and/or Memory Footprint
§ Importers and Exporters
§ Supporting Backward and Forward Compatibility

§ Summary

78 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Importers and Exporters

Java
model

Annotated
Java™

M
od

el
 Im

po
rt

er
EMF

M
od

el
 E

xp
or

te
r

Java
model
UML™

Java
model
XML

Schema

Java
model
Ecore

Java
model? Java

model?

Java
model
XML

Schema

Java
model

XML
Schema
for XMI

79 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Model Importers

§ A Model Importer (aka an importer) is responsible for creating an
Ecore model from the description of a modeled domain
§ An importer is also expected to create the Generator Model

(.genmodel file) for the Ecore Model (.ecore file)

§ Each importer knows how to handle a specific format of
description
§ EMF provides importers that handle the following formats
§ IBM® Rational Rose® models
§ XML Schemas
§ Annotated Java Interfaces
§ Ecore and EMOF files

80 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Model Exporters

§ A Model Exporter (aka exporter) is able to read an Ecore model
and generate another description of the same modeled domain
§ An exporter typically uses the information described in the

Generator Model to accomplish its purposes

§ EMF provides two exporters
§ XML Schema
§ XML Schema for XMI

81 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Going Deeper: Why is the Generator Model so important?

§ The Generator Model acts as a decorator for an Ecore Model
§ It provides details that would pollute the model, such as

§ The qualified name of an EPackage
§ BasePrefix attribute of a GenPackage

§ Actual location of the model, edit, editor, and test source folders

§ When a modeled domain is converted into an EMF model, the importer
may be able to capture some Generator Model details and store them in
a .genmodel file
§ The Java package of the Annotated Java Interfaces
§ Referenced XML Schemas that may or may not be already represented by

Ecore models

§ The Generator Model is useful to an exporter because
§ It can be used to persist details about the exported artifact
§ Some details may be important to properly describe the modeled domain

82 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Using Importers and Exporters

§ The importers and exporters are presented to the user as pages
of a standard EMF wizard
§ The registered importers are presented during the execution of the

new EMF model or EMF project wizards
§ The list of exporters is shown when the action “Export Model” is

invoked on a Generator Model
§ The motivation of this design is to let the importers and exporters

decide the input that the user needs to provide
§ Each implementation has total control over the number of

pages of the wizard and their content

§ The Rose and XML Schema importers are also available as
Eclipse applications and Ant tasks

83 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Contributing an Importer via an Extension

§ The wizard must be a class that
implements EMF’s IModelImporterWizard
interface
§Defines the setters that will be used by the
new EMF model and project wizards to
communicate the details about the model
specification being imported

<extension point="org.eclipse.emf.importer.modelImporterDescriptors">
<modelImporterDescriptor

id="com.mycompany.ModelImporterDescriptor.XYZ"
name="XYZ class model"
extensions="xyz"
wizard="com.mycompany.ImportWizard"/>

</extension>

84 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Contributing an Exporter via an Extension

§ The wizard must be a class that implements Eclipse’s
IWorkbenchWizard interface
§The first time the wizard is presented to the user, the method
init(IWorkbench, IStructuredSelection) is invoked and the selection argument
is either an IFile that contains the Generator Model or an instance of
GenModel

<extension point="org.eclipse.emf.importer.modelExporterDescriptors">
<modelExporterDescriptor

id="com.mycompany.ModelExporterDescriptor.XYZ"
name="XYZ class model"
wizard="com.mycompany.ExportWizard"/>

</extension>

85 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Contributing Importers and Exporters via Global Registries

§ The idea is to add the importer/exporter description to the
appropriate list
§ ModelImporterManager.INSTANCE.getModelConverterDescriptors()
§ ModelExporterManager.INSTANCE.getModelConverterDescriptors()

§ The importer and exporter descriptions are quite similar, which
led to the creation of a common parent interface

86 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Converter Framework

§ EMF contributes four importers and two exporters; it would be
really tedious to code each one of them from scratch so we’ve
created a framework
§ Using this framework is completely optional

§ The component architecture of the framework is

Importer Exporter

Rose

XML Schema

Annotated Java

Ecore

XML Schema

XML Schema for XMI

Converter

87 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Creating an Importer Using the Converter Framework

1. Create a class that extends ModelImporter
§ This is the most important class of the new importer
§ Is the object responsible for actually converting the domain

specification into an Ecore model
§ Should be UI-independent
§ It also
§ Stores the data entered by the user on each page of the

wizard
§ Is responsible for performing all the non-UI work of the import

§ Examples:
§ RoseImporter
§ XSDImporter

88 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Creating an Importer Using the Converter Framework

2. Create the wizard pages for the new importer
§ Each page should implement IModelImporterPage and extend

ModelConverterPage
§ Ensures that the page has access to the instance of the

ModelConverter created in the first step
§ The pages of the different importers provided by EMF are very

similar; if this is the case for the new importer, it is possible to
reuse the pages defined in the importer plug-in
§ ModelImporterDetailPage
§ ModelImporterPackagePage

89 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Creating an Importer Using the Converter Framework

3. Create a class that extends ModelImporterWizard
§ This class is the entry point of the new importer, since it

instantiates the ModelImporter subclass defined in the first step
§ Add the pages created for this importer

4. Register the new importer
§ If you’ve decided to register the importer via the global registry,

you can extend
ModelImporterManager.ModelImporterDescriptorImpl instead of
creating a new implementation of the ModelImporterDescriptor
interface

90 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Creating an Exporter Using the Converter Framework

§ The recipe for creating an exporter is similar to the one used for
an importer
§ The ingredients are little bit different though
§ ModelExporter instead of ModelImporter
§ IModelExporterPage instead of IModelImporterPage
§ And so on…

91 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Saving the Information of an Export Operation

§ One interesting feature provided by the Converter Framework is
the capability to persist the information related to an execution of
an export

§ The ModelExporter can save
§ The details used to generate the exported artifacts, i.e., the

information provided through the exporter’s wizard
§ Selected EPackages
§ Referenced EPackages
§ The directory URI

§ The location of the exported artifacts

§ The Converter Framework stores this data using GenAnnotations

92 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Going Deeper: GenAnnotations

§ GenAnnotations can be added to any instance of GenBase, i.e.
any object in a GenModel containment tree (including
GenAnnotations themselves)
§ The GenBase class provides two methods to work with

GenAnnotations
§ getGenAnnotations()
§ getGenAnnotation(String)

§ A GenAnnotation, like its close relative EAnnotation, defines
§ A source attribute, which is typically used to store a URI

representing the type of the annotation
§ A details map attribute to store name-value pairs
§ Containment and non-containment references to EObjects

93 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Going Deeper: GenAnnotations

§ The GenAnnotations are usually hidden in the Generator
§ You can unhide them by checking "Show Annotations" in the

"Generator" menu

94 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Agenda

§ EMF in a Nutshell

§ Working with URIs
§ Working with Resources and ResourceSets
§ Customizing the Code Generator
§ Tuning for Performance and/or Memory Footprint
§ Importers and Exporters
§ Supporting Backward and Forward Compatibility

§ Summary

95 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Backward/Forward Compatibility

§ EMF provides mechanisms that can be used to support migration
of data between different versions of a model (or between two
different models, for that matter):
§ Use Ecore2Ecore and Ecore2XML to define a mapping between

the different model(s) (versions)
§ Use Ecore2XMLExtendedMetaData with save/load options to

handle unrecognized data
§ Use a resource handler to pre/post-process data that cannot be

mapped automatically

§ Source and target models must have different namespace URIs
and XML references must not be based on feature names

96 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Ecore2Ecore Mappings

§ Describe a mapping between two Ecore models

§ Can be created from an Ecore (*.ecore) model via the ‘Map To
Ecore…’ context menu item in the Package Explorer or
Resource Navigator

§ Typically used as a development-time artifact (only)

§ Can include one-to-one, one-to-many, many-to-one, many-to-
many, and one-sided mappings

§ Only one-to-one and one-sided (one-to-none, none-to-one)
mappings are useful for data migration

97 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Ecore2XML Mappings

§ Describe a mapping between an Ecore model and its XML
representation

§ Can be generated from an Ecore2Ecore (*.ecore2ecore) model
via the ‘Generate Ecore to XML Mapping…’ context menu item in
the Package Explorer or Resource Navigator

§ Often used as a run-time artifact (in conjunction with
Ecore2XMLExtendedMetaData)

§ Can include one-to-one and many-to-one mappings, but only the
former are useful for data migration

98 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Ecore2XMLExtendedMetaData

§ Can be used with the OPTION_EXTENDED_META_DATA
save/load option defined on XMLResource to affect how data are
serialized/deserialized

§ Will consult registered Ecore2XML mappings to determine the
XML representation of objects

my.y my.x

x_2_y.ecore2xml

99 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

OPTION_RECORD_UNKNOWN_FEATURE

§ Load option defined on XMLResource

§ Will record data for unrecognized types and features in an
extension map (XMLResource#getEObjectToExtensionMap()) on
the resource

§ Recorded data will be serialized again when the resource is
saved (unless the entries in the map have been cleared)

my.x
my.y

y => x

100 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Resource Handlers

§ Interface XMLResource.ResourceHandler defines callbacks that
can be implemented to do special processing before/after a
resource is loaded/saved

§ Used with OPTION_RESOURCE_HANDLER save/load option
defined on XMLResource

§ Can support backward compatibility by extracting data from a
resource’s extension map after it is loaded

§ Can support forward compatibility by inserting data into a
resource’s extension map before it is saved

101 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Enabling Data Migration

1. Create a package registry and add entries which map the
source namespace URI and target Ecore model location to the
target package

2. Create an Ecore2XML registry and add an entry which maps
the source namespace URI to the Ecore2XML mapping

3. Create an instance of Ecore2XMLExtendedMetaData based on
the package and Ecore2XML registries; pass this extended
metadata as the value for the
XMLResource.OPTION_EXTENDED_META_DATA load/save
option

102 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Enabling Data Migration

4. Pass Boolean.TRUE as the value for the
XMLResource.OPTION_RECORD_UNKNOWN_FEATURE
load option

5. If required, pass an implementation of
XMLResource.ResourceHandler as the value for the
XMLResource.OPTION_RESOURCE_HANDLER load/save
option

103 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Agenda

§ EMF in a Nutshell

§ Working with URIs
§ Working with Resources and ResourceSets
§ Customizing the Code Generator
§ Tuning for Performance and/or Memory Footprint
§ Importers and Exporters
§ Supporting Backward and Forward Compatibility

§ Summary

104 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Summary

§ We have seen examples of how flexible and extensible the
Eclipse Modeling Framework is

§ Hopefully you have gained greater insight into how some of the
more “advanced” features of EMF can be exploited to meet your
application’s needs

105 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Resources

§ EMF documentation in Eclipse Help
§ Overviews, tutorials, API reference

§ EMF Project Web Site
§ http://www.eclipse.org/emf/
§ Overviews, tutorials, newsgroup,

Bugzilla

§ Eclipse Modeling Framework
by Frank Budinsky et al.
§ Addison-Wesley; 1st edition

(August 13, 2003)
§ ISBN: 0131425420.

106 Advanced Features of the Eclipse Modeling Framework | Tutorial | © 2006 by IBM; made available under the EPL v1.0

Legal Notices

§ IBM, alphaWorks, Lotus, Rational, Rational Rose and
WebSphere are registered trademarks of International Business
Corp. in the United States and other countries

§ Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both

§ UML is a trademark of the Object Management Group

§ Other company, product, or service names may be trademarks
or service marks of others

